Assistant Professor
Assistant Professor Profile Image

Department of Chemistry
University of Nebraska-Lincoln
711 Hamilton Hall
Lincoln, NE 68588-0304


Postdoctoral; Pacific Northwest National Laboratory
Ph.D., Analytical Chemistry; The University of Texas at Austin
B.A., Biochemistry; Texas Tech University

Professional Experience and Appointments

Assistant Professor, University of Nebraska-Lincoln (2023)
Chief Scientific Officer, e-MSion, Inc. (2020)
Senior Scientist, Pacific Northwest National Laboratory (2016)

Research Interests

Antimicrobial resistance, biotherapeutics, tandem mass spectrometry, top-down proteomics, native mass spectrometry, bioanalytical chemistry, chemical biology, structural biology

Current Research

The rapid spread of antimicrobial resistance among pathogenic microorganisms poses a growing threat to human health, as a rising number of pathogens are resistant to all known antimicrobials. Antimicrobial resistance occurs when microbes, such as bacteria, fungi, and parasites, develop mechanisms to evade drugs. These mechanisms include enzymatic modification and efflux pumping of the drug as well as mutations in proteins or other molecules that preclude drug function.

The Shaw lab aims to characterize antimicrobial resistance mechanisms and enable drug discovery through the development of novel mass spectrometry technologies and approaches integrated with high resolution structure determination techniques, such as cryogenic electron microscopy. Specifically, the Shaw research group is actively developing new tandem mass spectrometry (MS/MS) methods, ion mobility spectrometry (IMS) devices, and data acquisition strategies to enable top-down proteomics and native mass spectrometry characterization of protein sequence, posttranslational modification, ligand binding, and interactions with other biomolecules. Additionally, high-throughput chromatographic methods for protein complex purification directly coupled to mass spectrometry and soft-landing of selected complexes will enable breakthroughs in high-resolution structure determination of heterogeneous molecular machines.

Students in the Shaw research group have the opportunity to gain expertise in the fields of analytical chemistry, biochemistry, chemical biology, and structural biology using techniques and instrumentation including mass spectrometry, liquid chromatography, electron microscopy, proteomics, cell culture, and protein purification.

Selected Publications

(1)   Shaw, J. B.*; Cooper-Shepherd, D. A.; Hewitt, D.; Wildgoose, J. L.; Beckman, J. S.; Langridge, J. I.; Voinov, V. G. Enhanced Top-Down Protein Characterization with Electron Capture Dissociation and Cyclic Ion Mobility Spectrometry. Anal. Chem. 2022, 94, 3888–3896. DOI: 10.1021/acs.analchem.1c04870.

(2)   Novikova, I. V.; Zhou, M.; Du, C.; Parra, M.; Kim, D. N.; VanAernum, Z. L.; Shaw, J. B.; Hellmann, H.; Wysocki, V. H.; Evans, J. E. Tunable Heteroassembly of a Plant Pseudoenzyme–Enzyme Complex. ACS Chem. Biol. 2021, 16, 2315–2325. DOI: 10.1021/acschembio.1c00475.

(3)   Zhou, M.; Liu, W.; Shaw, J. B.* Charge Movement and Structural Changes in the Gas-Phase Unfolding of Multimeric Protein Complexes Captured by Native Top-Down Mass Spectrometry. Anal. Chem. 2020, 92, 1788–1795. DOI: 10.1021/acs.analchem.9b03469.

(4)   Velivelli, S. L. S.; Czymmek, K. J.; Li, H.; Shaw, J. B.; Buchko, G. W.; Shah, D. M. Antifungal Symbiotic Peptide NCR044 Exhibits Unique Structure and Multifaceted Mechanisms of Action That Confer Plant Protection. Proc. Natl. Acad. Sci. 2020, 117, 16043–16054. DOI: 10.1073/pnas.2003526117.

(5)   Shaw, J. B.*; Liu, W.; Vasil′ev, Y. V.; Bracken, C. C.; Malhan, N.; Guthals, A.; Beckman, J. S.; Voinov, V. G. Direct Determination of Antibody Chain Pairing by Top-down and Middle-down Mass Spectrometry Using Electron Capture Dissociation and Ultraviolet Photodissociation. Anal. Chem. 2020, 92, 766–773. DOI: 10.1021/acs.analchem.9b03129.

(6)   Shaw, J. B.*; Malhan, N.; Vasil’ev, Y. V.; Lopez, N. I.; Makarov, A.; Beckman, J. S.; Voinov, V. G. Sequencing Grade Tandem Mass Spectrometry for Top–Down Proteomics Using Hybrid Electron Capture Dissociation Methods in a Benchtop Orbitrap Mass Spectrometer. Anal. Chem. 2018, 90, 10819–10827. DOI: 10.1021/acs.analchem.8b01901.

(7)   Shaw, J. B.; Gorshkov, M. V.; Wu, Q.; Paša-Tolić, L. High Speed Intact Protein Characterization Using 4X Frequency Multiplication, Ion Trap Harmonization, and 21 Tesla FTICR-MS. Anal. Chem. 2018, 90, 5557–5562. DOI: 10.1021/acs.analchem.7b04606.

(8)   Shaw, J. B.; Lin, T.-Y.; Leach, F. E.; Tolmachev, A. V.; Tolić, N.; Robinson, E. W.; Koppenaal, D. W.; Paša-Tolić, L. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox. J. Am. Soc. Mass Spectrom. 2016, 27, 1929–1937. DOI: 10.1007/s13361-016-1507-9.

(9)   Shaw, J. B.; Li, W.; Holden, D. D.; Zhang, Y.; Griep-Raming, J.; Fellers, R. T.; Early, B. P.; Thomas, P. M.; Kelleher, N. L.; Brodbelt, J. S. Complete Protein Characterization Using Top-Down Mass Spectrometry and Ultraviolet Photodissociation. J. Am. Chem. Soc. 2013, 135, 12646–12651. DOI: 10.1021/ja4029654.

(10)   Shaw, J. B.; Ledvina, A. R.; Zhang, X.; Julian, R. R.; Brodbelt, J. S. Tyrosine Deprotonation Yields Abundant and Selective Backbone Cleavage in Peptide Anions upon Negative Electron Transfer Dissociation and Ultraviolet Photodissociation. J. Am. Chem. Soc. 2012, 134, 15624–15627.

*Corresponding Author