David Berkowitz

Willa Cather Professor & Department Chair
Willa Cather Professor & Department Chair Profile Image

Department of Chemistry
University of Nebraska-Lincoln
824A Hamilton Hall
Lincoln, NE 68588-0304
(402) 472-2738


Merck Postdoctoral Fellowship, Yale University
Ph.D., Harvard University
B.S., University of Chicago

National/International Leadership

Division Director, NSF Division of Chemistry (2015)
Co-Chair, Gordon Research Conference on Biocatalysis (2018)


2016 - Board of Editors - Organic Reactions
2015 - Fellow, American Association for the Advancement of Science (AAAS)
2010 - Inaugural WCCAS, Kickoff Plenary Lecturer, Beijing, China
2008 - Japan Society for the Promotion of Science Fellow
2006 - Visiting Professor, Max Planck Institute for Molecular Physiology, Dortmund, Germany
2005 - Visiting Professor, U. de Rouen, Rouen, France
1997-2001 - Alfred P. Sloan Fellow

Research Interests

Catalyst screening and reaction development, asymmetric synthesis, fluorinated phosphonates, mechanism-based enzyme inhibitors, PLP enzymes, lignan natural products

Current Research
Figure 1
Figure 1 Stereocontrolled and Ring-E Modular Synthesis of Bioactive Lignan Natural Products

Our group uses the power of stereocontrolled organic synthesis to address questions in biological chemistry, particularly those related to protein-ligand interactions. For example, Fig. 1 illustrates the first catalytic, asymmetric synthesis of (-)-podophyllotoxin, which serves as a tool for us to examine how the structure of the E-ring affects drug binding to tubulin. Total synthesis has yielded compounds more potent than the natural product itself, both in the tubulin assay and against human cancer cell lines.

Figure 2a
Figure 2a
Figure 2b
Figure 2b

We are also engaged in the synthesis and evaluation of unnatural analogues of amino acids (e.g. Fig. 2), designed to inactivate target enzymes. Coworkers on this project learn protein purification skills (Fig. 3), as well as enzyme kinetics, to characterize the nature of the inactivation. In a complementary endeavor, we construct mimics of natural phosphate esters that are inert to ubiquitous, digestive phosphatase enzymes. We use these phosphate mimics as bioorganic tools to build unnatural ligands for important natural phosphate binding pockets in enzymes (e.g. glucose 6-phosphate dehydrogenase) or receptors (e.g. M6P-IGF2R). Our phosphoserine mimic has served as an important bioorganic tool for biomedical scientists, at the NIH and Johns Hopkins, respectively, to study signal transduction in human tumor suppression (p53 pathway), and in production of the time-keeping hormone, melatonin.

Figure 3
Figure 3 Purification of Lysine Decarboxylase and Inactivation with a Designed, Mechanism-Based Inhibitor

In an exciting new development, we have turned the tables, and use enzymes to assist organic chemists in inventing new reactions through combinatorial catalysis. Arrays of potential catalysts are screened with "reporting" enzymes to provide the chemist with on the fly information about catalyst rate and enantioselectivity. We term this approach ISES (In Situ Enzymatic Screening).

For more information, please visit the Berkowitz Research Group Homepage.

Selected Publications

(1) Christopher D. McCune; Su Jing Chan; Matthew; Beio; Weijun Shen; Woo Jin Chung,; Laura Szczesniak; Chou Chai;  Shu Qing Koh , Peter T.-H. Wong;* David Berkowitz*  “Zipped Synthesis” by Cross-Metathesis Provides a CBS (Cystathionine β-Synthase) Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model," ACS Central Science 2016,  ASAPDOI: 10.1021/acscentsci.6b00019featured in Science Daily: http://www.sciencedaily.com/releases/2016/03/160309082748.htmfeatured in Medical News Today: http://www.medicalnewstoday.com/releases/307731.php

(2) Kannan R. Karukurichi, Xiang Fei, Robert A. Swyka, Sylvain Broussy, Sangeeta Dey, Weijun Shen, Sandip K. Roy, David B. Berkowitz*  “Mini-ISES Identifies Promising (Carba)fructopyranose-Based Salens for Asymmetric Catalysis: Tuning Ligand Shape via the Anomeric Effect.”  Science Advances 20151(6), e1500066; DOI: 10.1126/sciadv.1500066

(3) Gregory A. Applegate and David B. Berkowitz* “Exploiting Dynamic Reductive Kinetic Resolution (DYRKR) in Stereocontrolled Synthesis” Advanced Synthesis & Catalysis 2015357, 1619-1632, chosen as a VIP (Very Important Publication) by the editors; DOI: 10.1002/adsc.201500316

(4) Kaushik Panigrahi, Gregory A. Applegate, Guillaume Malik, David B. Berkowitz* “Combining aClostridial Enzyme Exhibiting Unusual Active Site Plasticity with a Remarkably Facile Sigmatropic Rearrangement: Rapid Stereocontrolled Entry into Densely Functionalized Fluorinated Phosphonates for Chemical Biology.  J. Am. Chem. Soc2015137, 3600-3609.   DOI: 10.1021/jacs.5b00022featured as a JACS Spotlight: DOI: 10.1021/jacs.5b02757

(5) Christopher D. McCune, Matthew L. Beio, Jacob A. Friest, Sandeep Ginotra, David B. Berkowitz* “A Useful Methoxyvinyl Cation Equivalent: a-t-Butyldimethylsilyl-a-methoxyacetaldehyde” Tetrahedron Lett.  201556, 3575-3579 (Special Symposium-In-Print honoring Harry H. Wasserman) DOI10.1016/j.tetlet.2015.02.122

(6) Xiang Fei, Thomas Holmes, Julianna Diddle, Lauren Hintz, Dan Delaney, Alex Stock, Danielle Renner, Molly McDevitt, David B. Berkowitz, Juliane K. Soukup  “Phosphatase-Inert Glucosamine 6-Phosphate Mimics Serve as Actuators of the glmS Riboswitch”  ACS Chemical Biology20149;2875-2882;  DOI: 10.1021/cb500458f

Complete list of publications