Handbook for Chemistry MAJORS
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome Letter from the Chair</td>
<td>2</td>
</tr>
<tr>
<td>Why Choose Chemistry as a Major</td>
<td>3</td>
</tr>
<tr>
<td>B.A. or B.S. – Which Degree is Right for You</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry Major Requirements – Bachelor of Science</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry Major Requirements – Bachelor of Arts</td>
<td>5</td>
</tr>
<tr>
<td>Recommended Course Sequence for B.S.</td>
<td>6</td>
</tr>
<tr>
<td>Recommended Course Sequence for B.A.</td>
<td>6</td>
</tr>
<tr>
<td>Switching from a B.A. to a B.S. Degree</td>
<td>7</td>
</tr>
<tr>
<td>Evaluation and Transfer of Chemistry Credits</td>
<td>7</td>
</tr>
<tr>
<td>Chemistry Majors and Pre-Health</td>
<td>7</td>
</tr>
<tr>
<td>Your Career in Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>Chemistry Majors’ Website</td>
<td>9</td>
</tr>
<tr>
<td>Scholarships and Financial Aid</td>
<td>10</td>
</tr>
<tr>
<td>Teaching Assistants</td>
<td>11</td>
</tr>
<tr>
<td>Undergraduate Research in Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>How to Get Involved in Research</td>
<td>13</td>
</tr>
<tr>
<td>Resources for Chemistry Students</td>
<td>14</td>
</tr>
<tr>
<td>Activities for Chemistry Students</td>
<td>15</td>
</tr>
<tr>
<td>For More Information</td>
<td>16</td>
</tr>
</tbody>
</table>

This handbook is for informational purposes only.
Please consult with your advisor and the Undergraduate Bulletin.
Welcome Letter From the Chair

Welcome to the Department of Chemistry at the University of Nebraska–Lincoln. More than a century ago, UNL granted its first college degree in chemistry. Today, UNL chemistry continues this tradition of innovation and excellence, offering students a world-class education in a small, yet vibrant, city setting. Our degree programs springboard students to top-notch graduate and medical schools as well as good-paying industrial positions.

Undergraduate instruction is very important to us. As a chemistry major, you will take courses with some of the finest instructors to be found at UNL. Several members of the faculty have been recognized with the Distinguished Teacher Award, the Outstanding Teaching and Instructional Creativity Award, election to the Academy of Distinguished Teachers, and the Arts and Sciences College Distinguished Teaching Award among others.

We offer both a bachelor of science (B.S.) and a bachelor of arts (B.A.) degree; later sections of this brochure describe these programs in more detail. You will also be free and encouraged to pursue minors or even double majors. The physical and natural sciences such as biological sciences, computer science, geosciences, mathematics, or physics are among the frequently explored options, but chart your own course and combine a chemistry major with training in journalism, business, psychology, or the arts. UNL chemistry graduates have achieved leading positions in the industrial, governmental, medical and academic worlds.

UNL is a research intensive university and as a UNL chemistry major, you will also have the chance to take part in undergraduate research. I urge you to do so. Our faculty are known nationally and internationally for the quality of their research, which encompasses both the traditional areas of chemistry (analytical, biochemistry, inorganic, organic, and physical chemistry) as well as interdisciplinary areas such as biophysical, chemical biology, and materials chemistry. Undergraduate research will not only reinforce and expand classroom learning experience but will give you access to personalized mentoring, advanced techniques, financial support, and most importantly, the excitement that comes from pushing back the frontiers of science.

I hope you will find this brochure helpful. Please feel free to contact any of us with questions about the chemistry program. We will look forward to seeing you at UNL!

Sincerely,

David B. Berkowitz
Chair of the Department of Chemistry
Why Choose Chemistry as a Major

A degree in chemistry opens up a world of opportunities!

Often described as the “central science,” chemistry involves the study of structures, properties and synthesis of matter ranging in size from single atoms to DNA. As a chemistry major, you will have the opportunity to:

- Discover the process for scientific inquiry.
- Become proficient in modern laboratory procedures.
- Gain a broad knowledge in the five major areas of chemistry (organic, inorganic, physical, analytical, and biological chemistry).
- Understand the practical and ethical applications of chemical principles in society.
- Take part in cutting-edge research projects.

A degree in chemistry plays a key role in a variety of careers. Some may be obvious to you: pharmaceutical development, chemical research and manufacturing, analysis, and science education. However, you may be surprised to find that a chemistry degree is an excellent beginning for careers in environmental studies, medicine, pharmacy, forensics, plant science, and law. To find out more career specifics be sure to visit the American Chemical Society Web page at acs.org.
B.A. or B.S. — Which Degree is Right for You

“Which degree is best for me, a B.A. or B.S. degree in chemistry?” This is a frequently asked question. The simplest answer is that the B.S. degree trains you to be a researcher whereas the B.A. gives you flexibility in meeting requirements outside of chemistry. Both the B.S. and B.A. prepare you for a career in chemistry. Even though a B.S. is preferred for getting a job, it is better to have a B.A. with a good GPA rather than a B.S. with a lower GPA.

The B.S. prepares you to enter graduate school or start a career as a chemist through its 10 extra credit hours of course work compared to the B.A. The difference in terms of content is that the B.S. program requires completion of Calculus III, the calculus-based physics sequence, and higher level chemistry courses. The B.A. program requires fewer chemistry laboratory credits and has fewer chemistry courses to give you the flexibility to meet other requirements for professional careers in health, law, agriculture, K-12 teaching, business, and a range of biological fields. However, it should be noted that it is

Major Requirements – Bachelor of Science

CHEMISTRY: 45 CREDITS

CHEM 101 (1 cr) Career Opportunities in Chemistry
CHEM 113 (4 cr) Fundamental Chemistry I
CHEM 114 (3 cr) Fundamental Chemistry II
CHEM 221 (4 cr) Elementary Quantitative Analysis
CHEM 261, 263 (3 cr, 2 cr) Organic Chemistry & Lab
CHEM 262, 264 (3 cr, 2 cr) Organic Chemistry & Lab
CHEM 399 (for at least 2 cr) Undergraduate Research in Chemistry
CHEM 431, 433 (3 cr, 2 cr) Structure & Metabolism & Biochemistry Lab
CHEM 481 (4 cr) Physical Chemistry I
CHEM 482, 484 (4 cr, 3 cr) Physical Chemistry II & Physical Chemical Measurements
One of the following:
 CHEM 421, 423 (3 cr, 2 cr) Analytical Chemistry & Lab
 CHEM 441, 443 (3 cr, 2 cr) Inorganic Chemistry & Lab

Note: Students may take CHEM 435 (3 cr) Chemical Biology in place of CHEM 431.

PHYSICS: 8 CREDITS

PHYS 211 (4 cr) General Physics I
PHYS 212 (4 cr) General Physics II
PHYS 222 (1 cr) General Physics Lab II (recommended)
PHYS 213 (4 cr) General Physics III (recommended)

MATH: 13 CREDITS

MATH 106 (5 cr) Calculus I
MATH 107 (4 cr) Calculus II
MATH 208 (4 cr) Calculus III
Major Requirements – Bachelor of Arts

CHEMISTRY: 35 CREDITS

CHEM 101 (1 cr) Career Opportunities in Chemistry
CHEM 109 (4 cr) General Chemistry I
CHEM 110 (4 cr) General Chemistry II
CHEM 221 (4 cr) Elementary Quantitative Analysis
CHEM 251, 253 (3 cr, 1 cr) Organic Chemistry I & Lab
CHEM 252, 254 (3 cr, 1 cr) Organic Chemistry II & Lab
CHEM 471 (4 cr) Physical Chemistry or CHEM 481 Physical Chemistry I (4 cr)

Two of the following:

CHEM 421, 423 (3 cr, 2 cr) Analytical Chemistry & Lab
CHEM 431, 433 (3 cr, 2 cr) Structure and Metabolism & Biochemistry Lab
CHEM 441, 443 (3 cr, 2 cr) Inorganic Chemistry & Lab

Note: Students may take CHEM 435 (3 cr) Chemical Biology in place of CHEM 431.

PHYSICS: 10 CREDITS

PHYS 141 (5 cr) Elementary General Physics I
PHYS 142 (5 cr) Elementary General Physics II

MATH: 9-10 CREDITS

MATH 106 (5 cr) Calculus I
MATH 107 (4 cr) Calculus II or MATH 238 Mathematical Methods for Biology & Medicine (5 cr)

possible to meet these other requirements while earning a B.S. in chemistry. For anyone thinking of graduate school (e.g. an M.S. or Ph.D.) in the physical sciences, pharmacy school, medical school, a technical or scientific career, the B.S. is the best option.

It is possible to convert from a B.A. program to the B.S., but it is easiest in the freshman year and it becomes more difficult after that. If you have already begun a chemistry degree program and want to change, or if you have doubts and questions about your path, you should meet with the chemistry undergraduate advisor who will help you find the degree that is the best fit for you.

All students graduating from the College of Arts and Sciences must complete Achievement Centered Education (ACE) requirements and College Distribution requirements. For specific information regarding which courses satisfy the various requirements, please consult the online Undergraduate Bulletin at bulletin.unl.edu/undergraduate/.
Recommended Course Sequence for B.S.

FIRST YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101 (1 cr)</td>
<td>CHEM 114, 221 (3 cr, 4 cr)</td>
</tr>
<tr>
<td>CHEM 113 (4 cr)</td>
<td>MATH 107 (4 cr)</td>
</tr>
<tr>
<td>MATH 106 (5 cr)</td>
<td></td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 261, 263 (3 cr, 2 cr)</td>
<td>CHEM 262, 264 (3 cr, 2 cr)</td>
</tr>
<tr>
<td>PHYS 211 (4 cr)</td>
<td>PHYS 212, 222 (4 cr, 1 cr)</td>
</tr>
<tr>
<td>MATH 208 (4 cr)</td>
<td></td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 481 (4 cr)</td>
<td>CHEM 482, 484 (4 cr, 3 cr)</td>
</tr>
<tr>
<td>CHEM 431 or CHEM 435, 433 (3 cr, 2 cr)</td>
<td>CHEM 399 (1 cr)</td>
</tr>
<tr>
<td>CHEM 399 (1 cr)</td>
<td></td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 441, 443 (3 cr, 2 cr)*</td>
<td>CHEM 421, 423 (3 cr, 2 cr)*</td>
</tr>
</tbody>
</table>
* Refer to page 4

Recommended Course Sequence for B.A.

FIRST YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101 (1 cr)</td>
<td>CHEM 110 (4 cr)</td>
</tr>
<tr>
<td>CHEM 109 (4 cr)</td>
<td>MATH 107 (4 cr) or MATH 238 (5 cr)</td>
</tr>
<tr>
<td>MATH 106 (5 cr)</td>
<td>PHYS 142 (5 cr)</td>
</tr>
<tr>
<td>PHYS 141 (5 cr)</td>
<td></td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 221 (4 cr)</td>
<td>CHEM 252, 254 (3 cr, 1 cr)</td>
</tr>
<tr>
<td>CHEM 251, 253 (3 cr, 1 cr)</td>
<td></td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 431 or CHEM 435, 433 (3 cr, 2 cr)*</td>
<td>CHEM 471 (4 cr) or CHEM 481</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Second Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 441, 443 (3 cr, 2 cr)*</td>
<td>CHEM 421, 423 (3 cr, 2 cr)*</td>
</tr>
</tbody>
</table>
* Refer to page 5
Switching from a B.A. to a B.S. Degree

Supplemental courses are available for students who started on the B.A. track, but wish to complete a B.S. degree.

1. CHEM 109, 110, (at 8 cr total) will be accepted as equivalent to CHEM 113, 114, (at 7 cr total).

2. CHEM 251, 253, 252, 254, and 463* (at 10 cr total) will be accepted as equivalent to CHEM 261, 263, 262, 264 (at 10 cr total).

* Students are required to obtain permission from the chemistry undergraduate advisor before registering for CHEM 463. The arrangement for the course should be made the semester before taking CHEM 463.

Evaluation and Transfer of Chemistry Credits

UNL offers Advanced Placement (AP) test credits and accepts International Baccalaureate (IB) course credits. These credits are evaluated based on exam scores. Currently, AP chemistry test scores will qualify for credits in CHEM 105 (Score 3) or CHEM 109 (Scores 4 and 5). IB chemistry exam scores on the higher level exam will qualify for credits in CHEM 109 (Score 5) or CHEM 109 & 110 (Score 6+). These required scores are subject to change.

Students may transfer course credits taken from other universities. Syllabi and examples of exams for these courses are needed for the evaluations. All advising questions regarding general chemistry courses (CHEM 1XX courses) must be addressed to the coordinator of general chemistry, Dr. Jason Kautz (e-mail: jkautz2@unl.edu). All other questions for higher level courses should be addressed to the chemistry undergraduate advisor, Dr. Barry Cheung (e-mail: ccheung2@unl.edu).

Chemistry Majors and Pre-Health

A chemistry degree incorporates most of the prerequisites for professional health schools, especially for medical schools and pharmacy schools. Pre-med requirements overlap courses required for the chemistry degree sequence, up to and including CHEM 431 Structure and Metabolism, which is specifically required for admission into the University of Nebraska Medical Center (UNMC). In fact, a chemistry degree includes every aspect of the pre-med requirements with the exception of 12 credits in biology. Since the bachelor of science (B.S.) in chemistry includes highly intensive course work, lab work, and independent research, our majors have one of the highest acceptance rates into medical schools.

A bachelor of arts (B.A.) in chemistry degree is another chemistry degree for students in pre-health tracks. It emphasizes course breadth and includes fewer chemistry courses and less lab work than the bachelor of science option. Its fewer chemistry course credit requirements allow B.A. chemistry majors to incorporate other course work for a second major or minor in their 4-year college course plan.
Navigating different pre-health career options can be a challenging task because the admission applications for each category of professional pre-health schools usually require an array of prerequisite courses and standard admission test scores. You are encouraged to visit the UNL Explore Center at 127 Love Library South. This center can assist you in exploring majors, selecting classes, developing strategies for academic success, getting involved in extracurricular experiences, and preparing for application to professional schools. Its professional academic advisors have updated knowledge of the admission requirements for different professional health schools. Lists of the most updated recommended courses for each pre-health option can be found on the center’s website. Schedule an appointment with an Explore Center advisor or visit the center’s website: explorecenter.unl.edu for more information.

Your Career in Chemistry

What can you do with a degree in chemistry? Discover the wide range of career options in the chemical sciences including industry, higher education, government, or working for yourself. Here is a list of the numerous career possibilities available to you with a degree in chemistry.

- Academic Professional Staff
- Agricultural and Food Chemistry
- Applied Research and Product Development
- Biotechnology
- Chemical Engineering
- Chemical Information Management Specialist
- Chemical Technology
- Chemistry and the Law
- Chemistry in the Arts
- Chemistry Professor
- Consulting
- Cosmetic Chemistry
- Crystallography
- Environmental Protection
- Food Chemistry
- Forensic Chemistry
- Formulation Chemistry
- Geochemistry
- Hazardous Waste Management
- Health and Safety
- High School Chemistry Teacher
- Human Resources
- Industrial Management
- Intellectual Property Management
- Materials Science
- Medicinal Chemistry
- Military Science and Technology
- Nuclear Chemistry
- Oil and Petroleum
- Personal Care Chemistry
- Pharmaceutical Chemistry
- Polymer
- Process Chemistry
- Project Management
- Public Health
- Quality Assurance
- Quality Control
- Regulatory Affairs
- Science Policy
- Social Impact/Activism
- Technical Communication
- Technical Sales and Marketing
- Technical Support
- Textile Chemistry
- Water Chemists

Need more information? Consult with the chemistry major undergraduate advisor about these career pathways. Or visit the American Chemical Society website (acs.org/content/acs/en/careers.html) to learn more about these opportunities in more details.

One means to explore your career in chemistry is to participate in relevant internships. They provide professional experiences and are an important complement to academics. You are encouraged to visit UNL Career Services at 225 Nebraska Union and schedule an appointment with a Career Services advisor. Check out their website at unl.edu/careers/internships for internship listings.
Chemistry Majors’ Website

The chemistry department maintains a website for chemistry majors that may be accessed through the link provided on the first page on your Blackboard account (my.unl.edu) as “Major: Chemistry.” This website contains much information, including the Chemistry Major’s Handbook. It is wise to check the site a few times a month since it contains current information about chemistry courses, scholarships, internships, jobs, advisor office hours and the Chemistry Club. Be advised that sometimes deadlines for scholarship or internship applications can be on quite short notice. If you do not find the link, it is probably because you have not properly declared your major which you may do by going to the College of Arts and Sciences Advising Center (107 Oldfather Hall) or seeing the chemistry undergraduate advisor.
Scholarships and Financial Aid

Chemistry majors are eligible for scholarships sponsored by the Department of Chemistry, the College of Arts and Sciences and the University of Nebraska. Although individual awards have different selection criteria, the two most important criteria are academic excellence and financial need. Nearly all of our scholarships mention one or both of these criteria.

Every chemistry major is automatically considered for every chemistry scholarship. You do not have to do anything except be a declared chemistry major. The Chemistry Scholarship Committee receives transcripts for all officially declared chemistry majors. It also receives a list of the “financial need” amount for every chemistry major who filled out the Free Application for Federal Student Aid (FAFSA) and completed the on-line Upperclass Scholarship Application by February 1.

To help the Chemistry Scholarship Committee make its decisions, we solicit information from our majors in the middle of the second semester. The purpose is to gain other information relevant to some of the scholarships. We ask about the organizations you have joined, the career goals you have, and your interests.

For full consideration for all of the scholarships that you might be eligible for, we recommend you visit the following websites for the most up to date information, supplemental applications and deadlines:

Chemistry Department Scholarship Information:
chem.unl.edu/scholarships-aid

Arts and Sciences Scholarship Information:
cas.unl.edu/scholarships-information

University of Nebraska–Lincoln Scholarship Information:
financialaid.unl.edu/how_to_apply.shtml

Free Application for Federal Student Aid:
fafsa.ed.gov

Education Abroad Scholarship Information:
educationabroad.unl.edu/scholarships

Nationally Competitive Fellowships Information
unl.edu/fellowships/prepare-your-future
Teaching Assistants

One of the best ways to learn a subject is to teach it. We offer a competitive salary for undergraduate teaching assistants, who do an excellent job of overseeing lab and recitation/discussion sections. Each semester the chemistry department employs several undergraduates as teaching assistants in the general chemistry program. This opportunity allows those involved to supervise the laboratory program and to review their own understanding of general chemical principles while teaching others. “What you are teaching, you are learning.”

Benefits

• You can gain the experience of working closely with graduate students and professors. This may allow you to determine areas in which you may want to pursue your own research.

• The starting pay for one semester, one section is $1,400-1,500 for new teaching assistants (TAs).

• Work experience adds to your resume when you apply to graduate schools. As an experienced TA, you will be able to present your teaching skills along with your academic record.

The Job

You will supervise undergraduate chemistry lab work. The experimental procedures and grading procedures are reviewed in training sessions. You will also assist in grading hourly exams. Answer keys are provided along with grading procedures. You will also work in the Resource Room to assist undergraduates with general questions.

In the Chemistry Resource Center, students have access to free tutoring by teaching assistants and a computer lab with specialized software. The Chemistry Resource Center is located in 227 Hamilton Hall. Open Monday through Friday, 8:00 a.m. to 4:30 p.m. Please check the Resource Center for additional available hours. The Center phone number is 402-472-3514. Additionally, if you are interested in becoming an undergraduate TA stop by the Resource Center front desk for more details.

Procedures

You will find out about the job postings for chemistry teaching assistants through chemistry professors and announcements posted in the chemistry building. An interview will be scheduled for prospective applicants. Be sure to have a brief resume and a summary of your grades earned in chemistry courses. An application can be obtained in the chemistry resource center in late spring. If selected, you must attend the mandatory training session during the two weeks prior to the fall semester.
Undergraduate Research in Chemistry

Research in the lab of a faculty member enables students to become firsthand participants in new chemistry discoveries. Research experience is essential for those pursuing careers and further education in chemistry.

Why should you participate in a research project?

- You will gain research experience important for entry into industry, graduate school, or any research-related discipline.
- Research is often cited by alumni as their most valuable undergraduate experience and when they first became excited about chemistry.
- When you do a research project, you will learn what research is all about and you will find out whether you like it.
- You get to use advanced equipment and techniques.
- It will increase your understanding of chemistry with real examples.
- You will have a one-on-one interaction with faculty and graduate students.
- Lab contacts may be useful for procuring recommendations for jobs and graduate/professional schools.
- UNL chemistry B.S. majors, those with the most research experience, have one of the highest acceptance rates into medical school.
- It is generally good for your GPA.
- Two credits of CHEM 399 Undergraduate Research in Chemistry are required for B.S. chemistry majors.

Students registering for CHEM 399 receive credits for laboratory or computational work within a chemistry research group. All chemistry graduates receiving a bachelor of science degree must complete at least 2 hours of research work. For students conducting lab research, time commitment varies from approximately 8-15 hrs/week. For every credit hour of CHEM 399, expect to devote 6-7 hrs per week. Generally, a few long blocks of time (3-4 hrs) are better than many short blocks. There is sometimes the opportunity to earn money, in addition to academic credits.

You can begin assisting with laboratory work at anytime. However, do not wait until spring semester of your final year! It is often easier to find an opening during the academic year and then stay on (for pay or credit) over summer.

Students are advised to consult with the undergraduate advisor one semester before registering for the CHEM 399 course. Note that students cannot register for this course without the written permission of a chemistry faculty member. B.S. degree students will normally have priority for these research opportunities since the CHEM 399 course is among their degree requirements.
How to Get Involved in Research

Once you decide that you are interested in doing a research project, finding one is very easy.

Here are some ideas to get you started:

- Keep a list of topics or items in chemistry that interest you
- Look at the faculty Web pages to get an idea of their research area chem.unl.edu
- Talk to the chemistry advisor
- Talk to your course instructor or TA

After you have found some professors whose research looks interesting to you, set up an appointment with them and find out what projects are available in their labs.

Other Research Opportunities

UCARE (Undergraduate Creative Activities and Research Experiences) at UNL is organized as a multi-year program, and students can become involved as sophomores, juniors, or seniors. With a sponsoring faculty member, the student in the first year works as a research assistant, learning about the research. In the second year, the student advances to his/her proposed project. Students can earn a stipend for their work up to $1,200 per semester or $2,400 for two semesters. Details about the UCARE program can be found at: ucare.unl.edu.

The McNair Program at UNL supports research in chemistry, sociology, engineering, psychology, math and related areas. The goal of this program is to increase the number of Ph.D.’s from targeted students (first generation to attend college or from groups underrepresented within the particular discipline). Seniors are eligible. There are both academic year and summer components. Contact the McNair Program (402-472-5062) for details.

The Beckman Scholars Program at UNL provides support for academic interdisciplinary undergraduate research fellowships in chemical and biological sciences. Each year, a group of three to five top performing students will be recruited to join a mentor’s research team with whom they are matched for two summers and the intervening year. The goal of the program is to put these students on a trajectory that will lead to a research career in the chemical and life sciences. These students will participate in specialized programming and workshops to support the development of professional and leadership skills. Contact Dr. Laura Damuth (e-mail: fellowships@unl.edu) for details.

There are approximately 55 NSF-Sponsored Research Experiences for Undergraduates (REU) programs in chemistry nationwide. Most programs target participants from schools other than the host school. Visit the chair’s office for more information about how to get involved with this program.

Students are encouraged to participate in industrial research internships to broaden their horizons in chemistry research. They can find such opportunities through various means such as UNL biannual career fairs and American Chemical Society website at: acs.org.
Resources for Chemistry Students

The Department of Chemistry at UNL is literally one of the most visible in the Midwest. Hamilton Hall (nine floors, 220,000 square feet), is among the largest structures in the nation dedicated solely to chemistry. The most modern research equipment is available to undergraduate students majoring in chemistry. The department also boasts a dedicated, skilled support staff including an information technology specialist, electronics technicians, and machine shop personnel. We will be able to provide you with a top-notch program that still offers close personal attention.

The Undergraduate Instrumentation Center

The Undergraduate Instrumentation Center (UIC) is located in room 414 of Hamilton Hall. The lab is primarily used by undergrads for both classroom labs and research projects. Instruments available for student use include:

- Shimadzu Fluorospectrometer
- Bruker Avance III-HD300 MHz NMR with Sample Changer
- Shimadzu UV-Vis Spectrophotometer
- HP Olis UV-Vis Diode Array
- Perkin-Elmer Atomic Absorption Spectrometer
- Varian Gas Chromatograph Instrument with FID (flame ionization detector)
- Thermo Nicolet 380 FT-IR with Diamond ATR
- Agilent GC-FID with sample changer
- Agilent HPLC with VWD (variable wavelength detector)
- Agilent HPLC with RID (refractive index detector)
- Waters 600 HPLC with VWD
- Smith Detection IlluminatiR – SensIR- IR microscope
- CH Instruments Potentiostat
- Leica Optical Microscope
- CEM MARS6 Microwave Reactor
- ThermoScientific Focus Gas Chromatograph/ PolarisQ Mass Spectrometry Instrument
- Zeiss EVO Scanning Electron Microscope

For more information about these instruments, visit the UIC website at chem.unl.edu/undergraduate-instrumentation-center.

Chemistry Resource Center

The Chemistry Resource Center is located in room 227 of Hamilton Hall. In the resource center, students have access to free tutoring by teaching assistants and a computer lab with specialized software.

For more information about the Resource Center, visit their website at chem.unl.edu/resource-center.
Activities for Chemistry Students

University of Nebraska–Lincoln students have access to hundreds of activities and groups related to specific academic, social, cultural, or political interests. Involvement in these organizations builds leadership, communication and organizational skills, and helps you make new friends with similar interests. The Department of Chemistry sponsors two student organizations, the Student Affiliates of the American Chemical Society (SAACS), which is primarily for undergraduates, and Phi Lambda Upsilon, a chemistry honor society, which offers a variety of social and professional development opportunities.

The American Chemical Society (ACS) is a self-governed individual membership organization that consists of more than 161,000 members at all degree levels and in all fields of chemistry. The organization provides a broad range of opportunities for peer interaction and career development, regardless of professional or scientific interests. The programs and activities conducted by ACS today are the products of a tradition of excellence in meeting member needs that dates from the Society’s founding in 1876.

The UNL Chapter of SAACS (also named UNL Chemistry Club) is very active on campus. They participate in the annual UNL Chemistry Day, fund-raisers, food drives, and travel to the ACS regional and national meetings. They also serve the community by being one of the only chapters in Nebraska to celebrate National Chemistry Week, with activities including a citywide poster contest, an exploration experiment with community organizations, and recognizing Mole Day. They do demonstrations for younger children in schools. They have speakers who inform them about what there is after undergraduate school and various types of research going on in the chemistry department. The chapter also has a lot of fun using social activities as a way to make new friends and meet faculty members.

The Chemistry Club’s goal is to have fun with chemistry, meet great friends, visit places that do chemistry-related work, and help each other out with things like homework and planning for a career or grad school. The club meets every two to three weeks, does cool demos, and goes on at least one trip each semester.

Phi Lambda Upsilon (PLU) is an honor society for graduate students and advanced undergraduate students. PLU sponsors an award lecture, takes part in trips to scientific meetings, sponsors two major departmental social events and works to promote the appreciation of chemistry.
For More Information About Chemistry at UNL

Department Chair
Dr. David B. Berkowitz
402-472-3634
dberkowitz1@unl.edu

Department Vice Chair
Dr. Jody Redepenning
402-472-3502
jredepen@unl.edu

Undergraduate Advisor
Dr. Barry Cheung
402-472-5172
ccheung2@unl.edu

Coordinator of General Chemistry
Dr. Jason Kautz
402-472-3514
jkautz2@unl.edu

Undergraduate Staff Assistant
Peg Bergmeyer
402-472-3514
pbergmeyer2@unl.edu